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Exact time evolution and master equations for the damped harmonic oscillator

Robert Karrlein and Hermann Grabert
Fakultät für Physik der Albert-Ludwigs-Universita¨t, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 26 August 1996!

Using the exact path integral solution for the damped harmonic oscillator it is shown that in general there
does not exist an exact dissipative Liouville operator describing the dynamics of the oscillator for arbitrary
initial bath preparations. Exact nonstationary Liouville operators can be found only for particular preparations.
Three physically meaningful examples are examined. An exact master equation is derived for thermal initial
conditions. Second, the Liouville operator governing the time evolution of equilibrium correlations is obtained.
Third, factorizing initial conditions are studied. Additionally, one can show that there are approximate Liou-
ville operators independent of the initial preparation describing the long-time dynamics under appropriate
conditions. The general form of these approximate master equations is derived and the coefficients are deter-
mined for special cases of the bath spectral density including the Ohmic, Drude, and weak coupling cases. The
connection with earlier work is discussed.@S1063-651X~97!04001-4#

PACS number~s!: 05.40.1j, 05.30.2d
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I. INTRODUCTION

Recently the problem of the reduced dynamics of a qu
tum system in contact with a reservoir has gained rene
interest@1–3#. While the foundations of quantum dissipativ
processes were layed already in the 1960s@4#, this early
work was mainly concerned with weakly damped syste
and has relied on the Born and Markov approximations
this conventional approach the dynamics of the dissipa
quantum system is described in terms of quantum maste
Langevin equations. Important progress beyond the lim
tions of the weak coupling approach was made in the 198
in particular path integral techniques were shown to be p
erful means to describe quantum dissipative systems@5#.
This has led to unexpected results, such as, for instance
nonexponential decay of correlation functions in the lo
temperature range@6,7#, not directly available within the
conventional master equation approach.

The insight gained also provided a basis for profound
tique @1,3,8,9# of concepts developed in the context of t
quantum master equation approach such as complete po
ity or the quantum regression theorem. However, the res
of the path integral approach were rarely used to derive
proved master equations valid in the range of strong damp
and/or low temperatures. In this paper we shall address
problem for the ubiquitous quantum dissipative system,
damped harmonic oscillator. Based on available exact res
@10# we derive generalized quantum master equations
scribing the exact relaxation of mean values and the t
evolution of equilibrium correlation functions. Whenever a
propriate, the results will be confronted and compared w
earlier findings.

More specifically, this paper is organized as follows.
the following section the microscopic model of a harmon
oscillator coupled to a harmonic bath is introduced. The
act time evolution of the reduced density matrix of the os
lator @10# will briefly be summarized. In Sec. III we examin
whether the exact time evolution of the density matrix
compatible with a generalized quantum master equation w
a time-dependent Liouville operator. It is shown that in ge
551063-651X/97/55~1!/153~12!/$10.00
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eral there is no Liouville operator independent of the init
preparation. In Sec. IV we study specific types of init
preparations. Exact time-dependent Liouville operators
scribing the time evolution of thermal initial conditions an
of correlation functions are derived. In the classical lim
these Liouville operators are shown to reduce to the Ad
man Fokker-Planck operator@11#. We also examine the cas
of factorizing initial conditions.

In Sec. V we investigate particular types of damping lea
ing to a time evolution of the density matrix governed a
proximately by a time-independent Liouville operator. Ea
lier results by Talkner@9# and by Haake and Reibold@12# are
recovered. We discuss in detail the limit of a weakly damp
oscillator and derive a generalization of the Agarwal eq
tion @13#. Additional time coarse graining is shown to lead
the quantum-optical master equation by Weidlich and Ha
@14#. Finally in Sec. VI we present our conclusions.

II. MODEL HAMILTONIAN
AND EXACT TIME EVOLUTION

The standard microscopic model@15–17# for the damped
harmonic oscillator starts out from a HamiltonianH com-
posed of the oscillator part

HO5
p2

2M
1
M

2
v0
2q2, ~1!

the bath Hamiltonian

HR5 (
n51

N S pn
2

2mn
1
mn

2
vn
2xn

2D , ~2!

and an interaction part

HOR52q(
n51

N

cnxn1q2(
n51

N cn
2

2mnvn
2 . ~3!

This model describes an oscillator with the associated c
sical equation of motion
153 © 1997 The American Physical Society



o

is

t
er

n

ro
y

w
-
m

rt
-

154 55ROBERT KARRLEIN AND HERMANN GRABERT
Mq̈~ t !1E
0

t

dsg~ t2s!q̇~s!1v0
2q~ t !50, ~4!

where

g~ t !5
1

M (
n51

N cn
2

mnvn
2cos~vnt ! ~5!

is the damping kernel. The dynamics of the density matrix
the entire system~oscillator and bath! is given by

W~ t !5exp~2 iHt /\!W~0!exp~ iHt /\!, ~6!

from where the reduced density matrix of the oscillator
obtained by tracing out the bath modes

r~ t !5TrRW~ t !. ~7!

The path integral technique allows for a complete solution
this problem for a large class of initial states. Since the d
vation is expounded in@10#, we merely state the result

r~qf ,qf8,t !5E dqidqi8dq̄dq̄8J~qf ,qf8,t,qi ,qi8,q̄,q̄8!

3l~qi ,qi8,q̄,q̄8!, ~8!

where l(qi ,qi8,q̄,q̄8) is the so-called preparation functio
defining the initial nonequilibrium stateW(0) as a modifica-
tion of the equilibrium stateWb5exp(2bH)/Trexp(2bH) in
the subspace of the oscillator. This modification can be p
duced by operatorsOj , Oj8 that act upon the particle onl
leaving the reservoir coordinates unchanged:

W~0!5(
j
OjWbOj8. ~9!

We then have

^quW~0!uq8&5E dq̄dq̄8l~q,q8,q̄,q̄8!^q̄uWbuq̄8&,

~10!

where

l~q,q8,q̄,q̄8!5(
j

^quOj uq̄&^q̄8uOj8uq8&. ~11!

Several relevant examples forl(q,q8,q̄,q̄8) are discussed in
@10# and special cases will be considered belo
J(qf ,qf8,t,qi ,qi8,q̄,q̄8) is the propagating function describ
ing the time evolution of the reduced density matrix. In ter
of the transformed coordinates r5(q1q8)/2,
x5q2q8, it reads

J~xf ,r f ,t,xi ,r i ,x̄, r̄ !5
1

N~ t !
expF i\S~xf ,r f ,t,xi ,r i ,x̄, r̄ !G ,

~12!

where
f

o
i-

-

.

s

S~xf ,r f ,t,xi ,r i ,x̄, r̄ !5 i S \ r̄ 2

2^q2&
1

^p2&
2\

x̄ 2D 1M @xfr f f 1~ t !

1xir i f 2~ t !2xir f f 3~ t !2xfr i f 4~ t !#

1
i

2
M @xi

2R11~ t !12xfxiR
12~ t !

1xf
2R22~ t !#1M $ r̄ @xiC1

1~ t !

1xfC1
2~ t !#2 i x̄@xiC2

1~ t !

1xfC2
2~ t !#% ~13!

and

N~ t !5
2p\

M u f 3~ t !u
~2p^q2&!1/2. ~14!

The functionsf i(t), R
66(t), andCi

6(t) are given in terms
of the symmetrized partS(t) and the antisymmetrized pa
A(t)52(\/2M )G(t) of the equilibrium coordinate autocor
relation functionC(t)5^q(t)q&5S(t)1 iA(t) in the follow-
ing way:

f 1~ t !5 f 2~ t !5
Ġ~ t !

G~ t !
, ~15!

f 3~ t !5
1

G~ t !
, ~16!

f 4~ t !52G̈~ t !1
Ġ~ t !2

G~ t !
, ~17!

R11~ t !5
M

\ H ^p2&
M2 1

f 3~ t !

^q2&
$2^q2&Ṡ~ t !

1 f 3~ t !@^q
2&22S2~ t !#%J , ~18!

R12~ t !5
M

\ H S̈~ t !2 f 1~ t !Ṡ~ t !2
f 3~ t !

^q2&
$Ṡ~ t !S~ t !

1 f 1~ t !@^q
2&22S2~ t !#%J , ~19!

R22~ t !5
M

\ H ^p2&
M2 2

1

^q2&
@Ṡ~ t !2 f 1~ t !S~ t !#21^q2& f 1

2~ t !J ,
~20!

C1
1~ t !5 f 3~ t !

S~ t !

^q2&
2 f 1~ t !, ~21!

C1
2~ t !5

Ṡ~ t !

^q2&
2 f 1~ t !

S~ t !

^q2&
1 f 4~ t !, ~22!

C2
1~ t !5

M

\ F ^p2&M2 1 f 3~ t !Ṡ~ t !G , ~23!
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55 155EXACT TIME EVOLUTION AND MASTER EQUATIONS . . .
C2
2~ t !5

M

\
@S̈~ t !2 f 1~ t !Ṡ~ t !#. ~24!

In the following we shall give results mainly in terms o
S(t) andG(t), which both remain finite in the classical lim
while A(t) vanishes. The Laplace transforms ofG(t) and
S(t) read in terms of the Laplace transformĝ(z) of the
damping kernel@10,18#

Ĝ~z!5@z21v0
21zĝ~z!#21,

Ŝ~z!5
1

Mb (
n52`

`
z

nn
22z2

@Ĝ~z!2Ĝ~ unnu!#, ~25!

wherenn52pn/\b. Finally,

^q2&5S~0!5
1

Mb (
n52`

`

@v0
21nn

21unnuĝ~ unnu!#21,

~26!

^p2&52M2S̈~0!5
M

b (
n52`

` v0
21unnuĝ~ unnu!

v0
21nn

21unnuĝ~ unnu!

are the equilibrium variances.

III. MASTER EQUATION

We now want to investigate the conditions under wh
the time evolution of the reduced density matrix can be
scribed by a master equation

]

]t
r~x,r ,t !5LS x,r , ]

]x
,

]

]r
,t D r~x,r ,t ! ~27!

with a generally time-dependent Liouville operatorL. Since
S is quadratic inx and r , it is sufficient to make the ansat

L5Lc~ t !1
\

M S ]

]x
,

]

]r D SXxx~ t ! Xxr~ t !

Xrx~ t ! Xrr ~ t !
D S ]

]x

]

]r

D
1~x,r !SYxx~ t ! Yxr~ t !

Yrx~ t ! Yrr ~ t !
D S ]

]x

]

]r

D
2
M

\
~x,r !S Zxx~ t ! Zxr~ t !

Zrx~ t ! Zrr ~ t !
D S xr D ~28!

with complex parameterLc(t) and complex matricesX(t),
Y(t), and Z(t). Without loss of generality we may pu
Xrx(t)5Xxr(t) andZrx(t)5Zxr(t). Hence, there are eleve
time-dependent functions in the ansatz~28!. Using Eqs.~8!,
~12!, ~13!, and ~28! to write the left-hand and right-han
sides of Eq.~27! in explicit form, we find that a maste
equation exists for arbitrary preparation functions provid
that 15 ordinary differential equations are fulfilled. Three
these, obtained by comparing the coefficients ofr f

2 ,r f r i ,r i
2

read
-

d
f

05Zrr ~ t !1Xxx~ t ! f 1~ t !
22 iYrx~ t ! f 1~ t !,

052 iYrx~ t !12Xxx~ t ! f 1~ t !,

05Xxx~ t ! f 4~ t !
2.

Inserting the solutionXxx(t)5Yrx(t)5Zrr (t)50 into the 12
remaining equations, one finds that the conditions obtai
by comparing the coefficients of 1 andr fxi imply
Lc(t)5Yrr (t). Taking this into account, we are left with th
following set of 11 equations:

ḟ 1~ t !52iXxr~ t ! f 1~ t !
21@Yrr ~ t !1Yxx~ t !# f 1~ t !12iZxr~ t !,

~29!

ḟ 2~ t !52iXxr~ t ! f 4~ t ! f 3~ t !, ~30!

ḟ 3~ t !5@Yrr ~ t !12iXxr~ t ! f 1~ t !# f 3~ t !, ~31!

ḟ 4~ t !5@Yxx~ t !12iXxr~ t ! f 1~ t !# f 4~ t !, ~32!

Ṙ11~ t !524iXxr~ t ! f 3~ t !R
12~ t !12Xrr ~ t ! f 3

2~ t !, ~33!

Ṙ12~ t !5@Yxx~ t !12iXxr~ t ! f 1~ t !#R
12~ t !1@22Xrr ~ t ! f 1~ t !

22iXxr~ t !R
22~ t !1 iYxr~ t !# f 3~ t !, ~34!

Ṙ22~ t !52@Yxx~ t !12iXxr~ t ! f 1~ t !#R
22~ t !12Zxx~ t !

22iYxr~ t ! f 1~ t !12Xrr ~ t ! f 1
2~ t !, ~35!

Ċ1
1~ t !522iXxr~ t ! f 3~ t !C1

2~ t !, ~36!

Ċ1
2~ t !5@Yxx~ t !12iXxr~ t ! f 1~ t !#C1

2~ t !, ~37!

Ċ2
1~ t !522iXxr~ t ! f 3~ t !C2

2~ t !, ~38!

Ċ2
2~ t !5@Yxx~ t !12iXxr~ t ! f 1~ t !#C2

2~ t !. ~39!

Since only seven functions of the ansatz~28! remain to be
determined, the set~29!–~39! will be seen to have no solu
tion in general. To demonstrate this explicitly, let us fir
disregard Eqs.~36!–~39!, which stem from comparing coef
ficients involving the coordinatesx̄ and r̄ of the preparation
function. The remaining set of equations~29!–~35! has a
unique solution and, the resulting Liouville operator can
written in the form

L~ t !5
i\

M

]2

]x]r
2
iM

\
gq~ t !rx2gp~ t !x

]

]x
2
iM

\
Dq~ t !x

]

]r

2
M2

\2 Dp~ t !x
2. ~40!

To see this one first notes that Eqs.~30!, ~31!, and~33! give

Xrr ~ t !5Yrr ~ t !50, Xxr~ t !5 i /2. ~41!

The remaining four functions are then readily determin
For later convenience they are expressed in terms of the
functions introduced in Eq.~40!, which are given by
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156 55ROBERT KARRLEIN AND HERMANN GRABERT
gq~ t !522iZxr~ t !5
G̈2~ t !2Ġ~ t !Ĝ~ t !

Ġ2~ t !2G~ t !G̈~ t !
,

gp~ t !52Yxx~ t !5
G~ t !Ĝ~ t !2Ġ~ t !G̈~ t !

Ġ2~ t !2G~ t !G̈~ t !
, ~42!

Dq~ t !5
i\

M
Yxr~ t !5gq~ t !^q

2&2
^p2&
M2

1
S~ t !@gp~ t !X~ t !1Ẋ~ t !#

^q2&G~ t !
1gp~ t !Y~ t !1Ẏ~ t !,

Dp~ t !5
\

M
Zxx~ t !5gp~ t !

^p2&
M2 1

Ṡ~ t !@gp~ t !X~ t !1Ẋ~ t !#

^q2&G~ t !

1
Ġ~ t !@gp~ t !Y~ t !1Ẏ~ t !#

G~ t !
,

where we have introduced

X~ t !5Ġ~ t !S~ t !2G~ t !Ṡ~ t !,
~43!

Y~ t !5G~ t !S̈~ t !2Ġ~ t !Ṡ~ t !.

InsertingXxr(t)5 i /2 andYrr (t)50 into Eqs.~36!-~39!, it is
readily seen that Eq.~36! and ~38! are already satisfied
However, Eqs.~37! and ~39! are only fulfilled provided that

S̈~ t !1gp~ t !Ṡ~ t !1gq~ t !S~ t !50, ~44!

Ŝ~ t !1gp~ t !S̈~ t !1gq~ t !Ṡ~ t !50. ~45!

Differentiating Eq.~44! and subtracting Eq.~45! we obtain

ġp~ t !Ṡ~ t !1ġq~ t !S~ t !50. ~46!

Now for ġp(t)Þ0 this gives

Ṡ~ t !

S~ t !
52

ġq~ t !

ġp~ t !
5
Ġ~ t !

G~ t !
, ~47!

where the last equation follows by means of Eq.~42!. This
implies

S~ t !5cG~ t ! ~ t>0!, ~48!

wherec is a real constant. Clearly, this condition, which
equivalent to Onsager’s regression hypothesis@3#, is never
met exactly whatever the form of the damping kernel. To
this explicitly we note that the Taylor series ofS(t) and
G(t) start according to

S~ t !5^q2&2
^p2&
2M2 t

21O~ t4!,

~49!
G~ t !5t1O~ t3!.

On the other hand, in the caseġp(t)50, the condition~46! is
only fulfilled if gp(t) and gq(t) are both independent o
time. FurtherS(t) must be of the form
e

S~ t !5d1e
2l1t1d2e

2l2t ~ t>0!, ~50!

where d1 and d2 are complex constants an
l1/25gp/26 iAgq2gp

2/4. Moreover, from Eq.~42! we see
thatgp(t) is constant provided thatG(t) is of the form

G~ t !5c1e
2l1t1c2e

2l2t ~ t>0!, ~51!

wherec1 andc2 are complex constants. It is now easily se
that Eqs. ~50! and ~51! never hold exactly except fo
gp50, which means in the absence of damping. Hence th
is no exactmaster equation for the damped harmonic os
lator with a Liouville operatorL independentof the prepa-
ration function.

In the remainder of this work we first consider speci
initial preparations for which the time evolution is describ
exactly by a time-dependent Liouville operator. We th
give examples for approximate Liouville operators valid f
particular types of damping.

IV. LIOUVILLE OPERATORS
FOR SPECIAL INITIAL PREPARATIONS

In the previous section we have shown that there is
exact Liouville operator that is independent of the prepa
tion function. However, for certain preparations the set
equations~29!–~39!, which determine the time-depende
parameters inL can be reduced allowing for an exact sol
tion. In the following three types of initial states will b
considered.

A. Thermal initial condition

Let us first consider a system that is initially in a state

^quW~0!uq8&5r ~q,q8!^quWbuq8&, ~52!

where r (q,q8) is an arbitrary function ofq and q8. This
initial condition allows in Eq.~9! only for operatorsOj and
Oj8 that are diagonal in position space. It can be used
describe initial states resulting from position measureme
but excludes measurements of velocities or variables
couple to the position and the momentum. Following Hak
and Ambegaokar@19# we call Eq.~52! a thermal initial con-
dition. Inspection of Eq.~10! shows that the correspondin
preparation function is given by

l~xi ,r i ,x̄, r̄ !5r ~xi ,r i !d~ x̄2xi !d~ r̄2r i !. ~53!

This form of the preparation function has the conseque
that only the difference of Eqs.~37! and ~32! and likewise
the difference of Eqs.~39! and ~34! must be fulfilled. Since
Eqs.~36! and~38! are again satisfied as a consequence of
~41!, there is indeed an exact solution

gq~ t !5
Ġ~ t !S̈~ t !2G̈~ t !Ṡ~ t !

Ġ~ t !S~ t !2G~ t !Ṡ~ t !
, ~54!

gp~ t !5
G~ t !S̈~ t !2G̈~ t !S~ t !

Ġ~ t !S~ t !2G~ t !Ṡ~ t !
,
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Dq~ t !5gq~ t !^q
2&2

^p2&
M2 ,

Dp~ t !5
^p2&
M2 gp~ t !.

When these coefficients are inserted into Eq.~40!, we obtain
a time-dependent Liouville operator valid for a large class
initial states. Using the relations

x→@q,•#, r→
1

2
$q,•%,

]

]x
→

i

2\
$p,•%,

]

]r
→

i

\
@p,•# ~55!

the resulting exact master equation can be written in the f

ṙ~ t !52
iM

\
gq~ t !Fq, 12 $q,r~ t !%1

i

\
^q2&@p,r~ t !#G

2
i

\
gp~ t !Fq, 12 $p,r~ t !%2

i

\
^p2&@q,r~ t !#G

2
i

M\ Fp, 12 $p,r~ t !%2
i

\
^p2&@q,r~ t !#G . ~56!

Here @A,B#5AB2BA denotes the commutator an
$A,B%5AB1BA the anti-commutator.

To see the connection of this master equation with ear
results, we rewrite it in terms of the Wigner transform of t
reduced density matrix defined by

w~p,q,t !5E dxexpS 2
i

\
xpD r~x,q,t !. ~57!

Using the rules

@q,•#→2
\

i

]

]p
, $q,•%→2q, ~58!

@p,•#→
\

i

]

]q
, $p,•%→2p, ~59!

we find from Eq.~56!

ẇ~p,q,t !5H ]

]p
Mgq~ t !Fq1

]

]q
^q2&G

1F ]

]p
gp~ t !2

]

]q

1

M GFp1
]

]p
^p2&G J

3w~p,q,t !. ~60!

This is of the form of a generalized Fokker-Planck equati
For the classical harmonic oscillator an equation of sim
form was found by Adelman@11# based on the generalize
classical Langevin equation

q̈~ t !1v0
2q~ t !1E

0

t

dsg~ t2s!q̇~s!5
1

M
j~ t !, ~61!
f

m

r

.
r

with a noise forcej(t) satisfying

^j~ t !&50 ~62!

and

^j~ t !j~0!&5MkBTg~ t !. ~63!

The time-dependent coefficients of the Adelman equation
given by

gq~ t !5
C̈cl
2 ~ t !2Ċcl~ t !Ĉcl~ t !

Ċcl
2 ~ t !2Ccl~ t !C̈cl~ t !

,

gp~ t !5
Ccl~ t !Ĉcl~ t !2Ċcl~ t !C̈cl~ t !

Ċcl
2 ~ t !2Ccl~ t !C̈cl~ t !

. ~64!

Since in the classical limitS(t) reduces toCcl(t), and

G~ t !52
M

kBT
Ċcl~ t ! ~65!

the coefficients~54! reduce to~64!. This shows that we have
derived an exact quantum mechanical generalization of
Adelman equation.

B. Liouville operator for the time evolution
of equilibrium correlations

In this section we investigate the time evolution of eq
librium correlation functions

^A~ t !B&5Tr~Ae2 iHt /\BWbe
iHt /\!, ~66!

whereA andB are variables of the oscillator and Tr denot
the trace over the Hilbert space of the entire system~oscilla-
tor and bath!. Inserting three partitions of unity and using

Tr5E dqTrR^qu•uq&, ~67!

where TrR is the trace over the Hilbert space of the bath, E
~67! can be written as a fourfold integral:

^A~ t !B&5E dq1dq2dq3dq4A~q2 ,q1!B~q3 ,q4!

3P~q1 ,q2 ,t,q3 ,q4!, ~68!

whereA(q,q8)5^quAuq8& and

P~q1 ,q2 ,t,q3 ,q4!5TrR~^q1ue2 iHt /\uq3&^q4uWbe
iHt /\uq2&!.

~69!

This function contains complete information about equil
rium correlation functions.

P(q1 ,q2 ,t,q3 ,q4) satisfies an exact master equation.
see this we first note that an equilibrium correlation functi
may be calculated in the following way@10#. One propagates
the initial reduced ‘‘density matrix’’rB(0)5Brb and takes
the expectation value ofA after timet. Hence,



o
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^A~ t !B&5tr@ArB~ t !#5E dqfdqf8A~qf8,qf !rB~qf ,qf8,t !,

~70!

where tr denotes the trace over the Hilbert space of the
cillator. Since the initial reduced ‘‘density matrix’’Brb cor-
responds to the ‘‘density matrix’’BWb of the entire system
the preparation function reads

lB~qi ,qi8,q̄,q̄8!5B~qi ,q̄!d~ q̄82qi8!. ~71!

Now, using

rB~qf ,qf8,t !5E dqidqi8dq̄dq̄8J~qf ,qf8,t,qi ,qi8,q̄,q̄8!

3lB~qi ,qi8,q̄,q̄8! ~72!
d

t
ct

n

s-

we arrive at

^A~ t !B&5E dqfdqf8dqidqi8dq̄dq̄8A~qf ,qf8!B~qi ,q̄!

3J~qf ,qf8,t,qi ,qi8,q̄,q̄8!d~ q̄82qi8!, ~73!

which yields by comparison with Eq.~68!

P~q1 ,q2 ,t,q3 ,q4!5E dyJ~q1 ,q2 ,t,q3 ,y,q4 ,y!. ~74!

Inserting the explicit form of the propagating function an
after the Gaussian integration overy, we are left with an
expression containingS(t) andG(t) only in the combination
S(t)2 i\G(t)/2M5C(t). One finds
P~xf ,r f ,t,xi ,r i !5
1

A2pN~ t !
expH iM2\

F Ṅ~ t !

N~ t !
~xfr f2xir i !1

Ṅ~ t !^q2&
N~ t !C~ t !

~xir f2xfr i ! 2
iM

\
F2

^p2&
M2 1

Ṅ~ t !2^q2&
4C~ t !2N~ t !

G ~xf21xi
2!

2
iM

\
S N̈~ t !

C~ t !
1

Ṅ2~ t !^q2&
2N~ t !C3~ t !

D xfxi1 i\

M

^q2&
N~ t !

~r f
21r i

2!22
i\

M

C~ t !

N~ t !
r i r f G J , ~75!
an
ical

se-

ty.
where r f5(q11q2)/2, xf5q12q2, r i5(q31q4)/2, and
xi5q42q3. Further, we have introduce
N(t)5^q2&22C(t)2. In view of thed function in Eq.~71!
there are again fewer conditions that must be satisfied by
time-dependent coefficients of the Liouville operator. In fa
it is easily seen that

Ṗ~xf ,r f ,t,xi ,r i !5LS xf ,r f , ]

]xf
,

]

]r f
,t DP~xf ,r f ,t,xi ,r i !,

~76!

with a Liouville operatorL of the form Eq.~40! with the
coefficients

gq~ t !5
C̈2~ t !2Ċ~ t !Ĉ~ t !

Ċ2~ t !2C~ t !C̈~ t !
,

gp~ t !5
C~ t !Ĉ~ t !2Ċ~ t !C̈~ t !

Ċ2~ t !2C~ t !C̈~ t !
, ~77!

Dq~ t !5gq~ t !^q
2&2

^p2&
M2 ,

Dp~ t !5
^p2&
M2 gp~ t !.

HenceP(xf ,r f ,t,xi ,r i) satisfies the exact evolution equatio
he
,

Ṗ~xf ,r f ,t,xi ,r i !5F2
iM

\
gq~ t !xS r1^q2&

]

]r D
2S gp~ t !x1

\

iM

]

]r D S ]

]x
1

^p2&
\2 xD G

3P~xf ,r f ,t,xi ,r i !. ~78!

To illuminate the virtue of this equation we note that it c
be used to calculate correlation functions in a quasiclass
manner. Introducing the double Wigner transform

P̃~pf ,qf ,t,pi ,qi !5
1

~2p\!2
E dxfdxiP~xf ,qf ,t,xi ,qi !

3expF i\ ~2xfpf1xipi !G . ~79!

and the Wigner-Moyal transforms ofA(xf ,r f) and
B(xi ,r i) according to

Ã~pf ,qf !5E dxfexpS 2
i

\
xfpf DA~xf ,qf !, ~80!

equilibrium correlations may be written as a double pha
space integral

^A~ t !B&5E dpfdqfdpidqiÃ~pf ,qf !B̃~pi ,qi !

3 P̃~pf ,qf ,t,pi ,qi !. ~81!

This means that we can viewP̃(pf ,qf ,t,pi ,qi) as a quantum
mechanical generalization of the classical joint probabili
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55 159EXACT TIME EVOLUTION AND MASTER EQUATIONS . . .
The Wigner form of the master equation~78!, which is again
a generalized Fokker-Planck equation, was first derived
Schramm, Jung, and Grabert@20# on the basis of phenom
enological reasoning. Note that the time-dependent co
cients are complex. However, in the classical limit they b
come real, since the imaginary part ofC(t) vanishes, and the
generalized Fokker-Planck equation reduces again to
Adelman equation.

C. Factorizing initial preparation

In earlier work it has been frequently assum
@12,17,21,22# that the initial density matrixW0 of the entire
system factorizes according to

W05r0WR , ~82!

where r0 is the density matrix of the oscillator, whil
WR5ZRexp(2bHR) is the canonical density matrix of th
unperturbed heat bath. Within our approach this situat
cannot be described by a special form of the prepara
function l(qi ,qi8,q̄,q̄8), however, factorizing initial state
are easily gained by disregarding contributions coming fr
the imaginary time path integral~see@10# for details!. The
time evolution of the density matrix is then given by

r~xf ,r f ,t !5E dridxiJFV~xf ,r f ,t,xi ,r i !r~xi ,r i ,0!,

~83!

where

JFV~xf ,r r ,t,xi ,r i !5
M u f 3~ t !u
2p\

expF i\SFV~xf ,r r ,t,xi ,r i !G
~84!

and

SFV~xf ,r f ,t,xi ,r i !5M @xfr f f 1~ t !1xir i f 2~ t !2xir f f 3~ t !

2xfr i f 4~ t !#1
i

2
M @xi

2RFV
11~ t !

12xfxiRFV
12~ t !1xf

2RFV
22~ t !#. ~85!

The index FV refers to Feynman and Vernon@21#. Note that
the definitions ofR66(t) are now modified:

RFV
11~ t !5 f 3

2~ t !Kq~ t !,

RFV
12~ t !5 f 3~ t !@

1
2 K̇q~ t !2 f 1~ t !Kq~ t !#, ~86!

RFV
22~ t !5Kp~ t !2 f 1~ t !K̇q~ t !1 f 1

2~ t !Kq~ t !,

where thef i(t) are given by Eqs.~15!–~17! and

Kq~ t !5
1

ME
0

t

dsE
0

t

duK8~s2u!G~s!G~u!,

~87!

Kp~ t !5
1

ME
0

t

dsE
0

t

duK8~s2u!Ġ~s!Ġ~u!.
y

fi-
-

he

n
n

The functionK8(t) is the real part of the real-time influenc
kernel. Its Laplace transform is related to the Laplace tra
form of the damping kernelĝ(z) by @10#

K̂8~z!5
M

\b (
n52`

`
z

z22nn
2@zĝ~z!2unnuĝ~ unnu!#. ~88!

The integrals in Eq.~87! cannot be expressed in terms
S(t) andG(t) as is the case forR66(t). The quadratic an-
satz ~28! now leads to Eqs.~29!–~35! with the functions
R66(t) replaced byRFV

66(t). There are no equations repla
ing ~36!–~39! since oscillator and bath are uncorrelated
the initial state. This set allows for a solution by the tim
dependent parameters

gq~ t !5
G̈2~ t !2Ġ~ t !Ĝ~ t !

Ġ2~ t !2G~ t !G̈~ t !

gp~ t !5
G~ t !Ĝ~ t !2Ġ~ t !G̈~ t !

Ġ2~ t !2G~ t !G̈~ t !
,

Dq~ t !5
\

M F12 K̈q~ t !2Kp~ t !1gq~ t !Kq~ t !1
gp~ t !

2
K̇q~ t !G ,

~89!

Dp~ t !5
\

M F12K̇p~ t !1
gq~ t !

2
K̇q~ t !1gp~ t !Kp~ t !G .

The resulting master equation is equivalent to the result
Haake and Reibold@12,23# who derived it directly from mi-
croscopic dynamics. Their formulas forKq(t) and Kp(t)
contain frequency integrals that may be evaluated to ob
Eq. ~87!. Later, this equation was rederived by Hu, Paz, a
Zhang @22# from the path integral representation. Th
equivalence can most easily be seen using the simpli
derivation given by Paz@24#.

We mention that for factorizing initial conditions the cla
sical limit does not yield the Adelman equation@25#. The
generalized Fokker-Planck operator differs by terms that p
sist over times of the order of the relaxation time. Th
means that switching on the interaction with the bath
t50 pathologically affects also the long-time behavior of t
system. Usually, the oscillator and the bath are integral p
of the same system and the factorization assumption is
appropriate.

V. LIOUVILLE OPERATORS FOR PARTICULAR TYPES
OF DAMPING

So far we have searched for exact master equations.
us now turn to the question whether for particular types
damping the dynamics may be described in terms of appr
mate Liouville operators valid for arbitrary preparation fun
tions. Thus, we have to find circumstances under wh
S(t) andG(t) take the forms of Eqs.~50! and ~51!. Using
Eq. ~42! we see that in this case the Liouville operator~40! is
time independent and the coefficientsDp(t)5Dp and
Dq(t)5Dq read
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160 55ROBERT KARRLEIN AND HERMANN GRABERT
Dq5gq^q
2&2

^p2&
M2 ,

Dp5gp

^p2&
M2 . ~90!

Note that this result is independent of the coefficie
c1 ,c2 ,d1 ,d2 in Eqs.~50! and~51!. The Wigner transform of
the density matrix then obeys Eq.~60! with time-independent
coefficientsgq andgp . This result is in accordance with th
findings of Talkner@9# on the most general form of a Liou
ville operator in Wigner form compatible with the corre
equilibrium expectation values.

To see explicitly when conditions~50! and ~51! hold, we
first investigate the consequences of Eq.~51!. By virtue of
Ehrenfest’s theoremG(t) is purely classical@6#, since it is
related to the response function

x~ t !5u~ t !
1

M
G~ t !, ~91!

describing the mean nonequilibrium displacement in
sponse to an applied force. Hence Eq.~51! implies that the
classical equation of motion is solved by a sum of two e
ponentials. This means essentially Ohmic damping.

A. Ohmic damping

For strictly Ohmic dampingĝ(z)5g and condition~51!
holds exactly. We have

G~ t !5c1e
2l1t1c2e

2l2t, ~92!

where l1/25g/26 iAv0
22g2/4 and c1/257(l12l2)

21.
Thusgp5g andgq5v0

2. We still have to examine whethe
S(t) fulfills Eq. ~50!. To this purpose it is useful to note tha
Eq. ~25! gives for the Fourier transforms

S̃~v!5
i\

2M
cothS vp

n D G̃~v!, ~93!

where

S̃~v!5Ŝ~2 iv!1Ŝ~ iv!,
~94!

G̃~v!5Ĝ~2 iv!2Ĝ~ iv!.

The latter relations follow from the fact thatS(t) is symmet-
ric andG(t) antisymmetric. Of course, Eq.~93! is just the
familiar fluctuation-dissipation theorem. Now, performin
the inverse Fourier transform we find@6#

S~ t !5d1e
2l1t1d2e

2l2t2G~ t !, ~95!

where

d1/25c1/2
\

2M
cotS pl1/2

n D ,
~96!

G~ t !5
2g

Mb (
n51

`
nnexp~2nnt !

~v0
21nn

2!22g2nn
2 .
s

-

-

This means that we have to find conditions under wh
G(t) may be disregarded. NowG(t) decays at least a
exp(2nt), wheren[n152pkBT/\. Therefore, for tempera
tures T@\g/4pkB , we have n@Re(l1), Re(l2), and
G(t) decays faster than the first two terms in Eq.~95!. Hence
for t@n21 the last term in Eq.~95! may be disregarded an
S(t) is of the form of Eq.~51!. However, in the strictly
Ohmic case we do not have a well-defined Liouville opera
since the sum~26! for ^p2& is logarithmically divergent lead-
ing to associated divergences of the coefficientsDq andDp
in Eq. ~90!. To avoid this divergence we have to take t
high frequency behavior of the damping coefficient into a
count, which implies in realistic cases

lim
z→`

ĝ~z!50. ~97!

B. Drude regularization

A more realistic behavior of the damping coefficient
modeled by

ĝ~z!5
gvD

z1vD
, ~98!

often referred to as Drude damping. Using Eq.~25! we then
find

G~ t !5c1e
2l1t1c2e

2l1t1c3e
2l3t, ~99!

where

l1/25a6 ih, l35d ~100!

are the solutions of

z32vDz
21~v0

21gvD!z2v0
2vD50 ~101!

and

c152
i

2h

a2 ih1d

a1 ih2d
,

c25
i

2h

a1 ih1d

a2 ih2d
, ~102!

c35
2a

~a2 ih2d!~a1 ih2d!
.

This result holds also in the overdamped case whereh be-
comes imaginary. To calculateS(t) we have to evaluate the
inverse Fourier transform of Eq.~93! by contour integration.
Using Eq.~99! one finds@26#

S~ t !5d1e
2l1t1d2e

2l1t1d3e
2l3t2G~ t !, ~103!

where

di5ci
\

2M
cotS pl i

n D , i51,2,3, ~104!

G~ t !5
2g

Mb (
n51

` vD
2 nne

2nnt

~l1
22nn

2!~l2
22nn

2!~l3
22nn

2!
. ~105!
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55 161EXACT TIME EVOLUTION AND MASTER EQUATIONS . . .
From these results we see thatS(t) andG(t) are of the forms
~50! and~51!, respectively, if the exponentials exp(2l3t) and
exp(2nnt) decay much faster than exp(2l1/2t). This is the
case for

Re~l1!, Re~l2!!d,n. ~106!

Using the Vieta relations

2a1d5vD ,

a21h25v0
2vD /d, ~107!

a21h212ad5v0
21gvD ,

we find that Re(l1/2)!d implies

a!d. ~108!

Further, the relations~107! yield

g

vD
52

a

d

11~v0 /d!2

~112a/d!2
. ~109!

In view of Eq. ~108! this gives@27#

g/vD52a/d28~a/d!21O„~a/d!3…. ~110!

Hence, it is natural to useg/vD as a small parameter t
determine the roots of Eq.~101!. Up to first order ing/vD
one obtains from Eqs.~100! and ~101!

a5
g

2

vD
2

vD
2 1v0

2 ,

h5Av0
212av0

2/vD2a2, ~111!

d5vD22a.

These relations are valid for arbitrary ratios ofg and v0.
Also vD /v0 is not necessarily large. As a consequence
this analysis we find that only under the conditions

g!vD ,n ~112!

and

t@vD
21 ,n21. ~113!

S(t) may be approximated by the first two terms in E
~103!. Hence, for sufficiently large Drude cutoff and suf
ciently high temperatures,kBT@\g, the oscillator dynamics
can be described by an approximate Liouville operator w
the coefficients

gq5a21h2

gp52a. ~114!

This combines with Eq.~90! to yield the approximate maste
equation
f

.

h

ṙ~ t !52
iM

\
~a21h2!Fq, 12 $q,r~ t !%1

i

\
^q2&@p,r~ t !#G

2
2i

\
aFq, 12 $p,r~ t !%2

i

\
^p2&@q,r~ t !#G

2
i

M\ Fp, 12 $p,r~ t !%2
i

\
^p2&@q,r~ t !#G , ~115!

first derived by Haake and Reibold@12#.
The equilibrium variances can be calculated analytica

@6#. In the strictly Ohmic limitvD→`, ^q2& is a regular
expression but̂p2& diverges logarithmically. If we disregard
terms of the orderv0 /vD , g/vD , n/vD , the divergent part
of ^p2& is given by

M\g

p
lnS vD

n D .
Hence, for the classical limit it is not sufficient to hav
n@v0, that is kBT@\v0, rather we also need
g ln(vD /n)!n. Thus the strictly Ohmic limitvD→` can
only be taken after the high temperature limit. With this s
quence of limits we obtain the classical coefficients

gq5v0
2 , gp5g, Dq50, Dp5

gkBT

M
. ~116!

The associated Liouville operator is equivalent to the cla
cal Fokker-Planck operator of the Kramers equation@28#.
We stress again that the results in this section remain v
for strong damping provided Eq.~112! is satisfied.

C. Weak damping with arbitrary frequency dependence

In this section we show thatS(t) andG(t) always take
the forms of Eqs.~50! and~51! in the limit of weak damping.
Let us assume that the damping kernelg(t) has a high fre-
quency cutoffvc and that its Laplace transform is an an
lytic function in the vicinity of2 iv0. We introduce a typical
damping strength by

gc5E
0

`

dsg~s!cos~v0s!. ~117!

Then the weak damping condition is

gc!v0 ,vc ,n. ~118!

Apart from thisg(t) is not assumed to have additional pro
erties.

In the limit considered one can determine the poles
Ĝ(z) from Eq. ~25! perturbatively. To first order ingc the
poles are

l1/25
gc

2
6 i S v01

gs

2 D , ~119!

where

gc1 igs5ĝ~2 iv0!. ~120!

Performing the inverse Laplace transform of Eq.~25! we find
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162 55ROBERT KARRLEIN AND HERMANN GRABERT
G~ t !5
i

2v0
~e2l1t2e2l2t! ~121!

with residues in zeroth order. Higher-order corrections wo
depend on the specific form ofĝ(z) but need not be deter
mined because the diffusion constants~90! are independen
of the residues. Thus, in the weak damping limitG(t) is of
the form of Eq.~51!. From Eq.~93! we see thatS̃(v) has the
same poles asG̃(v) and, in addition, poles atinn (n inte-
ger!. As shown above, we can disregard the terms com
from the poles atinn for times greater than the thermal r
laxation timen21. Thus,S(t) is effectively of the form of
Eq. ~50!. Insertingl1/2 into Eq.~90!, we find to leading order
in the damping strength

Dq5
1

Mb (
n52`

`
gsv02unnuĝ~ unnu!

v0
21nn

2 ,

~122!

Dp5
1

Mb (
n52`

` gcv0
2

v0
21nn

2 5gc

\v0

2M
cothS v0p

n D .
This result can be expressed in terms of the Laplace tr
form ~88! of the real part of the influence kernel

Dp1 iv0Dq5
\

M2 K̂8~2 iv0!. ~123!

Thus,Dq andDp are essentially given by the sine and cos
moments ofK8(t). With Kc1 iK s5K̂8(2 iv0) the master
equation takes the form

ṙ~ t !52
i

\ F p22M
1
M ~v0

21v0gs!

2
q2,r~ t !G

2
igc

2\
@q,$p,r~ t !%#2

Ks

M\v0
†p,@q,r~ t !#‡

2
Kc

\
†q,@q,r~ t !#‡. ~124!

This general weak coupling master equation is given in te
of four dissipation coefficients.gs leads to a frequency shif
and may be absorbed by renormalizingv0. gc is the classical
damping coefficient. The coefficientsKc andKs depend on
the temperature. WhileKc equalsMgc /\ times the average
energy of a quantum oscillator of frequencyv0, Ks depends
on the specific form ofĝ(z) and can be calculated analyt
cally only in certain cases. One of these is the Drude mo
Then the momentsgc/s andKc/s are readily evaluated to rea
d

g

s-

s

l.

gc5
gvD

2

vD
2 1v0

2 ,

gs5
gv0vD

vD
2 1v0

2 ,

~125!

Kc5
gcv0M

2
cothS v0p

n D ,
Ks5

v0M

p H ngs

2v0
1gcReFcS 11 i

v0

n D2cS 11
vD

n D G J .
In the strictly Ohmic limitvD→` we havegc5g, gs50
but

Ks52
gv0M

p
lnS vD

n D ~126!

is logarithmically divergent. The master equation~124! with
the coefficients~125! can be compared with the well-know
Agarwal equation@13#

ṙ~ t !52
i

\ F p22M
1
Mv0

2

2
q2,r~ t !G2

ik

\
@q,$p,r~ t !%#

2k
Mv0

\
cothS v0p

n D †q,@q,r~ t !#‡, ~127!

which was derived with the help of projection operator tec
niques from the same microscopic model using the B
approximation in conjunction with a short-memory appro
mation. As a main difference, we see that in Agarwal’s eq
tion theKs term is absent. This term is only negligible if

v0!vD!n ~128!

Hence, the master equation~124! is a generalization of the
Agarwal equation.

D. Connection to Lindblad theory

The approximate time-independent Liouville operato
studied above describe the dynamics after the decay of
transients. Markovian Liouville operators such as these
often discussed in the context of Lindblad theory@29#. This
theory establishes the most general form of generatorsL of
dissipative quantum dynamicsṙ(t)5Lr(t) preserving the
positivity of density operators. The Lindblad master equat
reads

ṙ~ t !52
i

\
@H̃,r~ t !#1

1

2\(
i

@Lir~ t !,Li
1#1@Li ,r~ t !Li

1#,

~129!

whereLl are arbitrary operators andH̃ is a Hermitian opera-
tor. Using results by Sandulescu and Scutaru@30# it is easily
seen that all the above-derived time-independent Liouv
operators are not of Lindblad form. This is not too astonis
ing since the master equations derived hold only for tim
t.t0 wheret0 is larger than an inverse cutoff frequency a
n21. The short time dynamics fort&t0 reduces the density
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55 163EXACT TIME EVOLUTION AND MASTER EQUATIONS . . .
matrix to a subspace where the fast components have
cayed. The Markovian master equation holds within this s
space only, while Lindblad theory requires validity forany
reduced density matrix. This is of course not necessary
has been emphasized again recently@1,31#.

However, we will show that in the weak coupling lim
further coarse graining will result in a Lindblad operator. T
this aim we first write the weak-coupling master equat
~124! in the form

ṙ~ t !5Lr~ t !5L0r~ t !1gL1r~ t !. ~130!

In terms of the usual creation and annihilation operat
a†, a we have

L052 iv0@a
†a,•#. ~131!

Using the operators

Pn5(
k

uk&^k1nu, ~132!

whereuk& are the eigenstates ofa†a, L0 may be written as

L05(
n

iv0nPn . ~133!

Further

gL152 i
gs

2
@a†a,•#1

gc2 igs

4
@a†2,•#2

gc1 igs

4
@a2,•#

1g↓~@a•,a†#1@a,•a†# !1g↑~@a†•,a#1@a†,•a# !

1
Kc1 iK s

2Mv0
~@a†•,a†#1@a†,•a†# !

1
Kc2 iK s

2Mv0
~@a•,a#1@a,•a# !, ~134!

where we have introduced

g↓↑5
Kc

2Mv0
6

gc

4
5

gc

4 FcothS v0p

n D61G . ~135!

The time evolution is formally given by

r~ t !5eLtr~0!. ~136!

Now we rewrite this by a well-known operator identity

r~ t !5eL0tr~0!1gE
0

t

dseL0~ t2s!L1eLsr~0!. ~137!

For weak damping and timest!g21 the operatoreLs in the
integrand may be replaced byeL0s. Inserting then Eq.~133!
into Eq. ~137! we find

r~ t !5eL0tF11g(
n,m

E
0

t

dseiv0~n2m!sPnL1PmGr~0!.

~138!

Further coarse graining is achieved by demanding
e-
-

as

s

t@v0
21 . ~139!

Then, by performing the time integral, the off-diagonal term
(nÞm) are seen to be smaller than the diagonal terms b
factor (v0t)

21. This means that in the time window
v0

21!t!g21

r~ t !5eL0t@11gtL̃1#r~0!, ~140!

where we have introduced theeffectivedissipative Liouville
operator

L̃15(
n
PnL1Pn . ~141!

The density matrix~140! coincides with the solution of the
master equation

ṙ~ t !5~L01gL̃1!r~ t ! ~142!

for

t!g21. ~143!

Thus, within the time windowv0
21!t!g21 the two opera-

tors L01gL1 and L01gL̃1 give the same dynamics. Th
operatorL̃1 may be evaluated further. It is seen that on
‘‘non-rotating’’ terms containing equal numbers of creatio
and annihilation operators survive the coarse graining
time. The resulting master equation

ṙ~ t !52 i S v01
gs

2 D @a1a,r~ t !#1g↑~@a1r~ t !,a#

1@a1,r~ t !a# !1g↓~@ar~ t !,a1#1@a,r~ t !a1# !

~144!

was first derived by Weidlich and Haake@14# from a micro-
scopic model for the damped motion of a single mode of
electromagnetic field in a cavity. The generator defined
this master equation is of Lindblad form. However, the
sulting mean value equations violate Ehrenfest’s theorem
particular

]

]t
^q~ t !&Þ^p~ t !&/M . ~145!

This is due to the fact that on the coarse-grained time s
Dt@v0

21 the variablesp(t)/Mv0 andq(t) exchange iden-
tity frequently and only a time-averaged version of the me
value equations must be obeyed.

VI. CONCLUSIONS

Based on results of the path integral technique we h
examined quantum master equations for the damped
monic oscillator. An exact generalized master equation
scribing the relaxation of initial thermal conditions was d
rived. This equation was shown to be a quantum mechan
generalization of Adelman’s Fokker-Planck equation. W
also have given an exact Liouville operator describing
time evolution of equilibrium correlation functions, whic
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likewise reduces to the Adelman Fokker-Planck operato
the classical limit. The fact that two different quantum ge
eralizations of the Adelman operator must be used for
relaxation of expectation values and the regression of fl
tuations is intimately connected with the failure of the O
sager regression hypothesis in the quantum regime. Ind
the two Liouville operators~56! and~76! are only identical if
S(t) is proportional toG(t).

Apart from these exact results we have studied in de
the range of parameters leading to quantum master equa
with time-independent generator. In the case of strong da
ing a time-independent Liouville operator is obtained a
proximately for essentially frequency-independent dampi
However, strictly Ohmic damping is ill behaved in the qua
tum case, and the appropriate generalization of the clas
Fokker-Planck process is given by a low frequency Ohm
model with high frequency cutoff such as the Drude mod
This is not too amazing since already in the classical li
the Adelman operator becomes time independent only
frequency-independent damping.

On the other hand, in the case of weak damping the
tailed frequency dependence of the damping coefficien
unimportant. We have derived a generalized master equa
valid for arbitrary weak damping as long as the sine a
s

n
-
e
c-
-
d,

il
ns
p-
-
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cosine moments of the damping kernel exist. The new we
coupling master equation is more general than the w
known Agarwal equation. We have explained why the Lio
ville operator is not of Lindblad form. However, time coar
graining leads to a generator of Lindblad form. The result
coarse grained master equation was found to be
Weidlich-Haake equation also known as the quantum opt
master equation. Due to the time coarse graining only a tim
averaged version of the mean value equation is obeyed l
ing to an apparent contradiction with the Ehrenfest theore

In summary, we have derived several generalized ma
equations for the damped quantum oscillator for vario
cases of interest. In view of the results earlier findings w
put in proper perspective.
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