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Exact time evolution and master equations for the damped harmonic oscillator
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Using the exact path integral solution for the damped harmonic oscillator it is shown that in general there
does not exist an exact dissipative Liouville operator describing the dynamics of the oscillator for arbitrary
initial bath preparations. Exact nonstationary Liouville operators can be found only for particular preparations.
Three physically meaningful examples are examined. An exact master equation is derived for thermal initial
conditions. Second, the Liouville operator governing the time evolution of equilibrium correlations is obtained.
Third, factorizing initial conditions are studied. Additionally, one can show that there are approximate Liou-
ville operators independent of the initial preparation describing the long-time dynamics under appropriate
conditions. The general form of these approximate master equations is derived and the coefficients are deter-
mined for special cases of the bath spectral density including the Ohmic, Drude, and weak coupling cases. The
connection with earlier work is discussd®&1063-651X97)04001-4

PACS numbds): 05.40:+j, 05.30—~d

[. INTRODUCTION eral there is no Liouville operator independent of the initial
preparation. In Sec. IV we study specific types of initial
Recently the problem of the reduced dynamics of a quanpreparations. Exact time-dependent Liouville operators de-
tum system in contact with a reservoir has gained renewegcribing the time evolution of thermal initial conditions and
interest{1—3]. While the foundations of quantum dissipative Of correlation functions are derived. In the classical limit
processes were layed already in the 1960k this early these Liouville operators are shown to reduce to the Adel-
work was mainly concerned with weakly damped systemgnan Fokker-Planck operatpt1]. We also examine the case
and has relied on the Born and Markov approximations. IrPf factorizing initial conditions.
this conventional approach the dynamics of the dissipative [N Sec. V we investigate particular types of damping lead-
quantum system is described in terms of quantum master ¢fg 0 a time evolution of the density matrix governed ap-
Langevin equations. Important progress beyond the limitaProximately by a time-independent Liouville operator. Ear-
tions of the weak coupling approach was made in the 19804ier results by Talknef9] and by Haake and Reibo[d2] are
in particular path integral techniques were shown to be powrecovered. We discuss in detail the limit of a weakly damped
erful means to describe quantum dissipative systEfis oscillator and derive a generalization of the Agarwal equa-
This has led to unexpected results, such as, for instance, tfi@n [13]. Additional time coarse graining is shown to lead to
nonexponential decay of correlation functions in the lowthe quantum-optical master equation by Weidlich and Haake
temperature rang€6,7], not directly available within the [14]. Finally in Sec. VI we present our conclusions.
conventional master equation approach.
The insight gained also provided a basis for profound cri- Il. MODEL HAMILTONIAN
tique [1,3,8,9 of concepts developed in the context of the AND EXACT TIME EVOLUTION
uantum master equation approach such as complete positiv- . .
iciy or the quantumqregressigr? theorem. Howeverf)the r%sult The §tanda_rd microscopic modél5—17 fo-r the_ damped
of the path integral approach were rarely used to derive im- armonic oscnlat_or starts out from a Hamiltonigh com-
proved master equations valid in the range of strong dampinaosed of the oscillator part
and/or low temperatures. In this paper we shall address this 2

problem for the ubiquitous quantum dissipative system, the Ho:p—+ ngqZ, 1)
damped harmonic oscillator. Based on available exact results 2M 2
[10_] we derive generallze_d guantum master equatlons.de[—he bath Hamiltonian
scribing the exact relaxation of mean values and the time
evolution of equilibrium correlation functions. Whenever ap- 2
propriate, the results will be confronted and compared with Hg= >, ( Pn _”wﬁxﬁ) , )
earlier findings. n=1\2m, 2
More specifically, this paper is organized as follows. In ] )
the following section the microscopic model of a harmonicand an interaction part
oscillator coupled to a harmonic bath is introduced. The ex- N N2
act time evolution of the reduced density matrix of the oscil- _ 2 n
lator [10] will briefly be summarized. In Sec. Ill we examine Hor= qngl CXn 0 ,121 2mnw2n' @

whether the exact time evolution of the density matrix is
compatible with a generalized quantum master equation witirhis model describes an oscillator with the associated clas-
a time-dependent Liouville operator. It is shown that in gen-sical equation of motion
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t . 2
vam+ [ dsyt-siae +efaw-o. @ zuhnmmxgzﬁ:ia >+§; M)
where +Xirifa(t) =Xir ¢ f3(t) = x¢rif4(t)]
N 2 i 2+ + +-
1 (o + =M[X'R™ " (1) +2x;x;R™ (1)
OB VI i S R (5) 27 o
n=1 My,
+X2R™ (1) ]+ M{r[xC (1)
is the damping kernel. The dynamics of the density matrix of _ )
the entire systenfoscillator and bathis given by +xC1 (D] =ix[xC3 (1)
W(t) = expl — iHt/A)W(0)expliHt /%), ©) %Gy (O]} (13
from where the reduced density matrix of the oscillator isand
obtained by tracing out the bath modes ot
N(t)= e (2m(g?) Y2 14
p()=TrW(t). (7) RVITNGIRCAC R 19

The path integral technique allows for a complete solution toThe functionsf;(t), R**(t), andC;"(t) are given in terms
this problem for a large class of initial states. Since the deriof the symmetrized par§(t) and the antisymmetrized part

vation is expounded ifil0], we merely state the result A(t)=—(R/2M)G(t) of the equilibrium coordinate autocor-
relation functionC(t) ={q(t)q)=S(t) +iA(t) in the follow-
, [ / P ing way:
p(qf,qf,t)=f dg;dg;dqdq’J(ar,q¢.t,0;.,07,9.9")
!N N (t)
XN (gi,0i,9,9"), 8 fL(t)="f,(t)= L (15)
where A (q;,q;,q,q’) is the so-called preparation function
defining the initial nonequilibrium stat/(0) as a modifica- fo(t)= (16)
tion of the equilibrium stat&V ;= exp(—BH)/Trexp(— 8H) in G(t)
the subspace of the oscillator. This modification can be pro-
duced by operator®;, OJ—’ that act upon the particle only G(1)2
leaving the reservoir coordinates unchanged: fa(t)=—G(t)+ = G’ (17)
W(O):z OiWﬁ’Oil' ©) Ty — <p2> 2
J R™7(1)= z MZ izt <q2> {2< >S(t)
We then have
+f3(t)[<q2>2—52(t)]}]. (18)
<QIW(0)IQ’>=f dada’™(9,q",9,9"){aWgla’), y )
(10 R* ()= g[at)—n(t)s‘(t) <3(2>{S<t>s
where
+f1(t)[<q2>2—52(t)]}}, (19
Na.9°,0.97)= 2 (alojlay(@1o]la’). (1D
' (P31
- t )S(t) 12+ (g?) fa(t ]
Several relevant examples fdtq,q’,q,q’) are discussed in =7 [W m[S( )= LOSOI (@) (O)
[10] and special cases will be considered below. (20
J(g¢,95,t,9;,9/,9,9") is the propagating function describ-
ing the time evolution of the reduced density matrix. In terms o S(t) _
of the transformed coordinates r=(q+q’)/2, Cl(t)_f3(t)@ fa(v), (D)
Xx=q—q’, it reads
. S S(t)
1 i - = _ =7
KT et KT Wex‘{ S et ,X,r)}, C1(= 7y 11O 7y + fal®), (22)
(12 5
C,(t)= M) >+f (1S(t) |, (23
where 2 h| M2 3
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— 2__;
Cg(t)z%[S(t)—fl(t)S(t)]. (24) 0=Z, (1) + XD F2 ()= 1Y (1) F1(1),
0= =Y (1) + 22X (1) F1 (1),

In the following we shall give results mainly in terms of

S(t) andG(t), which both remain finite in the classical limit 0=Xy(t)f4(t)%.

while A(t) vanishes. The Laplace transforms @&ft) and
S(t) read in terms of the Laplace transforiy(z) of the
damping kerne[10,1§

Inserting the solutiorX,,(t) =Y ,(t)=Z,(t)=0 into the 12
remaining equations, one finds that the conditions obtained
by comparing the coefficients of 1 and;x; imply
é(z):[ZZ+wg+ ()17, L.(t)=Y,(t). Taking this into account, we are left with the
following set of 11 equations:

©

. 1 - - ,
S(Z):M_,B n;m ﬁ[G(Z)—G(IvnI)J, (25 fl(t)=2ier(t)f1(t)2+[Yrr(t)+Yxx(t)]f1(t)+2izxr(g§)

wherev,=2mn/h B. Finally,

f(t) =20 X (1) F4(1) F5(1), (30)
<qz>=8(0)=i > [wa+ 2+ vl Y| w17t Fa(t)=[Y. (1) + 20X, () F1(D)]F 31
MB o2, LooTvativaly(jwaD] a(0) =Y (1) + 20X (1) F1 (1) ]F5(1), (31)
26 .
9 f4(1) =[Yyu(t) + 20X (1) F2 (1) TF4(1), (32

_M % wg+|vn|a’(|vn|)

2

Sty — A +- 2
B 0= 2t 2 o) RT™7(1) = —4iX (D F3()RT (1) + 2X,, (1) f5(1), (33

(p%)=—M?25(0)
R (1) =[Yye(t) + 22X () F1() IRT (1) + [ — 2X, () F1 (1)

—2iX (DR () +1Y (1) ]f5(1), (39

are the equilibrium variances.

Ill. MASTER EQUATION

We now want to investigate the conditions under which  R™ (1) = 2[ Y, (1) + 2i Xy, (1) F1() JR™ ™ (1) +2Z,4(1)
the time evolution of the reduced density matrix can be de-

., H 2
scribed by a master equation 21 (O1(1) +2X (D (1), (39
9 a9 Co(t)=—2iX, (1) f3(1)CL (1), 36
ﬁp(x,r,t)=£(x,r,a—x,a—r.t)p(x,r,t) 27 1(1) x(DFa(H)Cy (1) (36)
Cr (=Y, +2iXo(OHfy(DICI (D),  (37)
with a generally time-dependent Liouville operator Since ! XX e !
3, is quadratic inx andr, it is sufficient to make the ansatz Cg(t): — 2iX,, (O F5(H)C5 (1), (39)
. ﬁ( 5 (9) (xxxm xxr<t>) x C; () =[Yyu() + 22X (1 (DIC; (). (39)
= )+ —| —,—
(1) ML aX™ ar |\ X (t) X (1) d Since only seven functions of the ans&28) remain to be
ar determined, the séP9)—(39) will be seen to have no solu-
tion in general. To demonstrate this explicitly, let us first
K2 disregard Eqs(36)—(39), which stem from comparing coef-
Yuxt)  Yyr(t)\ | Ix ficients involving the coordinates andr of the preparation
+ (X, Yo (1) Y. (1) J function. The remaining set of equatiofid9)—(35) has a
rx " — unique solution and, the resulting Liouville operator can be
ar written in the form
—M(xr Zxx(t) Zxr(t) X (28) i% (92 iM 9 iM J
TN Zg () Zp()) \r =M axar 7 YaOrx— yp(Ox 2= == Dg()x—
with complex parametek .(t) and complex matriceX(t), M2
Y(t), and Z(t). Without loss of generality we may put —FDp(t)xz. (40

X () =X, (1) and Z,,(t) =Z,,(t). Hence, there are eleven

time-dependent functions in the ansé28). Using EAs.(8), T4 see this one first notes that E¢30), (31), and(33) give

(12), (13), and (28) to write the left-hand and right-hand

sides of EQ.(27) in explicit form, we find that a master X (=Y, (1)=0, X (t)=i/2. (41)
equation exists for arbitrary preparation functions provided

that 15 ordinary differential equations are fulfilled. Three of The remaining four functions are then readily determined.
these, obtained by comparing the coefficients ofr ;r; ,r? For later convenience they are expressed in terms of the four
read functions introduced in Eq40), which are given by
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G2(H)-G(HE(Y)
GA(H)—G(1)G(t)’

')’q(t) ==2iZ,(t)=

G(t)G(t)—G(t)G(t)

=— = .. 2
Yp(t) ==Yy (1) S0 —- 6050 (42)
iz )
Dq(t): IMYxr(t) = 'Yq(t)<q2>_ %g
SO ¥p(HX(1) +X(1)] :
% 2y gt t)X(t) + X(t)
Dp(t): szx(t): '}’p(t) <|\F/)| 2>+ S )[y?;2>G((t) Wl
GO yp(HY (D) +Y(1)]
G(t) ’
where we have introduced
X(t)=G(t)S(t) - G(1)S(t),
(43

Y(H)=G(1)S(t) - G(D)S(1),
InsertingX,,(t)=i/2 andY,,(t) =0 into Eqs.(36)-(39), it is

readily seen that Eq(36) and (38) are already satisfied.

However, Eqs(37) and(39) are only fulfilled provided that

S(t)+ (1) S(1) + 74(H) S(t) =0, (44)

S(t)+ () S() + 4(1)S(t) =0. (45)

Differentiating Eq.(44) and subtracting Eq45) we obtain

Yp(1)S(t) + y4()S(t) =0. (46)
Now for y,(t)#0 this gives
SO v® 6 “n

Sty GO

where the last equation follows by means of E4p). This
implies

S(t)=cG(t) (t=0), (48

wherec is a real constant. Clearly, this condition, which is

equivalent to Onsager’s regression hypoth¢8is is never

met exactly whatever the form of the damping kernel. To se

this explicitly we note that the Taylor series &t) and
G(t) start according to

2
S(t)=(q?)— %t%ou“),

(49
G(t)=t+O(t%).

On the other hand, in the casg(t) =0, the condition(46) is

only fulfilled if yy(t) and y4(t) are both independent of

time. FurtherS(t) must be of the form
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S(t)=d,e Mi+de 2t (t=0), (50)
where d; and d, are complex constants and

N1jp= 'yp/Zii\/yq—'ysz. Moreover, from Eq(42) we see
that y,(t) is constant provided tha(t) is of the form

G(t)=c,e M+ce ™ (t=0), (51)
wherec, andc, are complex constants. It is now easily seen
that Egs. (50) and (51) never hold exactly except for
¥p=0, which means in the absence of damping. Hence there
is no exactmaster equation for the damped harmonic oscil-
lator with a Liouville operator independenbf the prepa-
ration function.

In the remainder of this work we first consider specific
initial preparations for which the time evolution is described
exactly by a time-dependent Liouville operator. We then
give examples for approximate Liouville operators valid for
particular types of damping.

IV. LIOUVILLE OPERATORS
FOR SPECIAL INITIAL PREPARATIONS

In the previous section we have shown that there is no
exact Liouville operator that is independent of the prepara-
tion function. However, for certain preparations the set of
equations(29)—(39), which determine the time-dependent
parameters inC can be reduced allowing for an exact solu-
tion. In the following three types of initial states will be
considered.

A. Thermal initial condition

Let us first consider a system that is initially in a state
(alW(0)|q")=r(a,a"){alWgla’), (52

wherer(q,q’) is an arbitrary function ofg and q'. This
initial condition allows in Eq/(9) only for operator<O; and

Oj’ that are diagonal in position space. It can be used to
describe initial states resulting from position measurements
but excludes measurements of velocities or variables that
couple to the position and the momentum. Following Hakim
and Ambegaokalr19] we call Eq.(52) athermal initial con-
dition. Inspection of Eq(10) shows that the corresponding
preparation function is given by

)\(Xi,ri,rr)=r(xi,ri)5(x_—xi)5(r_—ri). (53)

This form of the preparation function has the consequence

e[hat only the difference of Eq$37) and (32) and likewise

the difference of Eqs39) and (34) must be fulfilled. Since
Eqgs.(36) and(38) are again satisfied as a consequence of Eq.
(41), there is indeed an exact solution

G(HS(t)—G(H)S(1)
G()S(t)—G()S(t)

'Yq(t) = (54)

G(1)S(t) — G(t)S(t)
G(1)S()—G(HS(t)’

')’p(t):
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(p?) with a noise force(t) satisfying
Dy(t)= yq(t)(a) — 7
(&(1))=0 (62)
2
Dy(t) = ﬁ—ﬁmt). and
(&(1)£(0))=MkgTy(1). (63)

When these coefficients are inserted into &), we obtain
a time-dependent Liouville operator valid for a large class ofrhe time-dependent coefficients of the Adelman equation are

initial states. Using the relations given by
1 . .
X_>[qv']! r—>§{q,'}, yo(t)= Cgl(t)_ccl(t)ccl(t)
T G- CahCy(t)’
S A T I e
ox 2rYT T ar AT Cu(t)Cq(t) —Cy(t)Cy(t
X r o= (1) Ce(t) i(t) |(). 64)

> .
the resulting exact master equation can be written in the form Ca(t) = Ca(t)Cel(t)

Since in the classical limi§(t) reduces taCy(t), and

1 i
g, 51O} + (a9 p.p(1)]

. iM
p(t)=— qu(t)

M .
- - G(t)=——=Cq(t) (65
I 1 i KT ~C
- g?’p(t){q.i{p,ﬂ)(t)}— g<p2>[q.P(t)]} B
the coefficientg54) reduce to(64). This shows that we have

[ 1 [ derived an exact quantum mechanical generalization of the
o - _ _/n2
Mh{p’ Z{p’p(t)} h<p )[q,p(t)]}. (56 Adelman equation.

Here [A,B]=AB—BA denotes the commutator and B. Liouville operator for the time evolution
{A,B}=AB+BA the anti-commutator. of equilibrium correlations

To see the connection of this master equation with earlier
results, we rewrite it in terms of the Wigner transform of the
reduced density matrix defined by

In this section we investigate the time evolution of equi-
librium correlation functions

| (A(1)BY=Tr(Ae B W eHth), (66)
W(p,q,t)=f dxexn( - gXp)p(x,q,t)- (57)

whereA andB are variables of the oscillator and Tr denotes
the trace over the Hilbert space of the entire systestilla-

Using the rules tor and bath Inserting three partitions of unity and using
ho 2 58
[G-1== 75 tai—20 8) Trzf dqTre(al-|a), (67)
ﬁ & . .
(D] T (p,-1—2p, (59) where Tk is the trace over the Hilbert space of the bath, Eq.

aq (67) can be written as a fourfold integral:

we find from Eq.(56)
q <A(t)B>:j dg;dg,dg;dg,4A(d2,01)B(03,04)

. J 1%
W(p,q,t)=[%M vq(t)[q+ 5<q2>} X P(01,92,t,03,04), (68)

whereA(q,q’)=(q|Alq’) and

J 0 1 Jd 5

+ %‘}/p(t)_ﬁm p+ %(p )
p .0,,1,03, =T —iHt/% W iHt/A .
“W(p.q.t). 60) (91,02,t,03,04) =Trr({qs|e |d3)(qal g€ |q%é)9)

This is of the form of a generalized Fokker-Planck equation:This function contains complete information about equilib-
For the classical harmonic oscillator an equation of similaftium correlation functions.
form Was found by Adelmalﬁll] based on the generalized P(ql,q27t,q3,q4) satisfies an exact master equation_ To
classical Langevin equation see this we first note that an equilibrium correlation function
t 1 may be calculated in the following wd{0]. One propagates
q(t)er(z)q(t)Jrf dsy(t—s)q(s)= —&(1),  (61) the initial reduced density mat_rlx ps(0)=Bp; and takes
0 M the expectation value &k after timet. Hence,
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) , ) we arrive at
<A(t)B>=tr[ApB(t)]=J dasddsA(ds,ds) pe(ds,ds,t),

(70 <A(t)B>:f da;dg;da;da’dqdqg’A(gs,qf)B(a; ,0)

where tr denotes the trace over the Hilbert space of the os-

cillator. Since the initial reduced “density matrixBpz cor- xJ(a¢,9¢,t,9,9{,0,97) 8(d" —ay), (73
responds to the “density matrixB W, of the entire system,
the preparation function reads which yields by comparison with E468)
\e(0i,q{,9,9")=B(q;,a)6(a"—q;). (79
. P(QI!QZ!thBIqu)Zf dy‘](qquthaq3!yvq4vy)- (74)
Now, using
e J— , ,— Inserting the explicit form of the propagating function and
pe(ds,q¢,t)= | dgidg’dagdq’J(g¢,qs,t,9;,0/,9,9") after the Gaussian integration ovgr we are left with an
, i expression containing(t) andG(t) only in the combination
XN\g(0;,0{,9,9") (72 s(t)—iAG(t)/2M =C(t). One finds
|
1 iM | N(t) N(t)(q?) iM| (P> NOXD | ,
P(X¢,re X ,17)= WGX% E[W(Xfrf—xiri)+ W(Xirf_xfri) 7l Mz T AC(D2N(D) (Xf+X7)
iM (N N%(t)(g?) in (9% , , _ihC()
_T(C(t) NS XM N T T2 N T [ (79)

where r{=(0;+02)/2, X;=01—0dz, ri=(d3+qy)/2, and : iM
Xi=04— 0s. Further, we have introduced ~ P(X¢.T¢, 1%, 1) =| = 7= ¥4(D)X
N(t)=(qg?)2—C(t)2. In view of the & function in Eq.(71)

there are again fewer conditions that must be satisfied by the a\la (p?
time-dependent coefficients of the Liouville operator. In fact, | wp(OXF s || ot X
. : iMor/\ox #

it is easily seen that

r+<q2>a—ar)

XP(Xg,rg,t,%,15). (78)
: _ J To illuminate the virtue of this equation we note that it can
PGt T =L X Ty X’ Irg ’t) PO tXir), be used to calculate correlation functions in a quasiclassical
(76) manner. Introducing the double Wigner transform
with a Liouville operator( of the form Eq.(40) with the E(pf s, t,pi,0) = %J dx;dx P(X¢,q¢,t,X; ,q;)
coefficients (2mh)
i
. D X —(- +xp)|. 7
o S -ewén o xrt ke, 79
Y= 5 ——— =,
C*(t)— C(1)C(t) and the Wigner-Moyal transforms ofA(x,r;) and
B(x;,r;) according to
= SWEM-CC - - ; i
')/p CZ(t)_C(t)C(t) ! A(pf vqf) - f XeXp — gxfpf A(Xf :qf)! (80)

) equilibrium correlations may be written as a double phase-
(p%) space integral

Dq(t):')’q(t)<q2>_W!
<A(t)B>=f dprda;dpdaA(py a0 B(p; .a)
2
Dp(t)= <|5|—2>7p(t)- XP(pr,ar.t.p;.0). (81)

This means that we can vieﬁ(pf ,ds,t,pi ,q;) as a quantum
HenceP(x;,r;,t,X;,r;) satisfies the exact evolution equation mechanical generalization of the classical joint probability.
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The Wigner form of the master equatiérB), which is again  The functionK'(t) is the real part of the real-time influence
a generalized Fokker-Planck equation, was first derived bkernel. Its Laplace transform is related to the Laplace trans-
Schramm, Jung, and Grabg®0] on the basis of phenom- form of the damping kernej(z) by [10]

enological reasoning. Note that the time-dependent coeffi-

cients are complex. However, in the classical limit they be-
come real, since the imaginary part@ft) vanishes, and the

(88)

K’ (z)— 3 2, 7= 2@ mlvv]

generalized Fokker-Planck equation reduces again to the

Adelman equation.

C. Factorizing initial preparation

In earlier work it has been frequently assumedR*~(t) replaced byRp,

[12,17,21,22that the initial density matrixV, of the entire
system factorizes according to

WQZ pQWR y (82)

where pg is the density matrix of the oscillator, while
Zgexp(—BHg) is the canonical density matrix of the

Wr=

The integrals in Eq(87) cannot be expressed in terms of
S(t) andG(t) as is the case foR™*(t). The quadratic an-
satz (28) now leads to Eqgs(29)—(35 with the functions

7 (t). There are no equations replac-
ing (36)—(39) since oscHIator and bath are uncorrelated in
the initial state. This set allows for a solution by the time-
dependent parameters

G2(H)—G(HE(Y)

unperturbed heat bath. Within our approach this situation

cannot be described by a special form of the preparation
function \(q;,q/,q,q’), however, factorizing initial states
are easily gained by disregarding contributions coming from

the imaginary time path integrésee[10] for detailg. The
time evolution of the density matrix is then given by

P(Xfyrf't):f dridx Jey(Xs,r¢,0,X, 1) p(Xi,1,0),
(83

where

Mifs (h| F{%—EFV(varr'tiXi:ri)}

(84

Jrv(Xs, 1y X 1) =

and

2 ev(Xe 1,6 X 1) = MIXer f 4 (1) + X1 f (1) —xir¢F5(t)

i
=x¢rif4(1)]+ S MIXREY (1)
+2xpiRey (D) +X{Rey (D] (89)

The index FV refers to Feynman and Verr{@i]. Note that
the definitions ofR**(t) are now modified:

Riy (1) =f5(1)K4(1),

Rey () =f3()[ 2Kq() — F1(DK(D)], (86)
Ry (1)=Kp(t) = f1(DKq(t) +FH()K4(D),
where thef,(t) are given by Eqs(15—(17) and
1 [t t
Kq(t) = MfodsfoduK’(s—u)G(s)G(u),
(87

Kp(t)=— stJ duK’(s—u)G(s)G(u).

7T ) -6 (m6(Y)
oo G(t)G(t)—G(1)G(t)
L T T

() q(t)}

(89

iill.
Dq(t):M[EKq( t)— p(t)+7/q(t)Kq(t)+

7q( )

1
Dp(O=1713Ke(0+ = K(t)—"_’}/p(t)Kp(t)}-

The resulting master equation is equivalent to the result by
Haake and Reibol{l12,23 who derived it directly from mi-
croscopic dynamics. Their formulas fdt,(t) and K(t)
contain frequency integrals that may be evaluated to obtain
Eq. (87). Later, this equation was rederived by Hu, Paz, and
Zhang [22] from the path integral representation. The
equivalence can most easily be seen using the simplified
derivation given by Pag24].

We mention that for factorizing initial conditions the clas-
sical limit does not yield the Adelman equati¢®5]. The
generalized Fokker-Planck operator differs by terms that per-
sist over times of the order of the relaxation time. This
means that switching on the interaction with the bath at
t=0 pathologically affects also the long-time behavior of the
system. Usually, the oscillator and the bath are integral parts
of the same system and the factorization assumption is not
appropriate.

V. LIOUVILLE OPERATORS FOR PARTICULAR TYPES
OF DAMPING

So far we have searched for exact master equations. Let
us now turn to the question whether for particular types of
damping the dynamics may be described in terms of approxi-
mate Liouville operators valid for arbitrary preparation func-
tions. Thus, we have to find circumstances under which
S(t) and G(t) take the forms of Eqs(50) and (51). Using
Eq. (42) we see that in this case the Liouville operaid) is
time independent and the coefficienB8,(t)=D, and
Dqy(t)=Dg read
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(p? This means that we have to find conditions under which
Dq:7q<q2>_W1 I'(t) may be disregarded. NoW'(t) decays at least as
exp(—t), wherev=v,=2xwkgT/%. Therefore, for tempera-
(p?) tures T>hyldmkg, we have v>Re(\;), Re(\,), and
Dp= OAVER (90)  I'(t) decays faster than the first two terms in E®b). Hence

for t>v ! the last term in Eq(95) may be disregarded and

Note that this result is independent of the coefficientss(t) is of the form of Eq.(51). However, in the strictly

. . Ohmic case we do not have a well-defined Liouville operator
C1,C,,d;,d, in Egs.(50) and(51). The Wigner transform of ) o )
tr}e orfenéityzmatri?( then obeys E&0) with Sme-independent since the sur_m26) fo_r (p?) is logarithmically @yergent lead-
coefficientsy, andy, . This result is in accordance with the !ngEto ?;g)oc_lrated d!\éetrﬁeng.es of the coefﬂhmehgstantdlsp th
findings of Talknef9] on the most general form of a Liou- In EQ. - 10 avol IS divergence we have 10 fake the

ville operator in Wigner form compatible with the correct Eguhnfrwmiﬂﬁ%bﬁgsa\i?;e(glig'][ﬁ: igrsngsmg coefficient into ac-
equilibrium expectation values. ’ P

To see explicitly when condition&0) and (51) hold, we lim (2)=0. (97)
first investigate the consequences of Egfl). By virtue of 700
Ehrenfest’s theoren@(t) is purely classical6], since it is

related to the response function B. Drude regularization

1 A more realistic behavior of the damping coefficient is
x(1)=6(0) 1 G(b), (9D modeled by

describing the mean nonequilibrium displacement in re- Uz)= Y®p ,
sponse to an applied force. Hence Esfl) implies that the Z+ wp
classical equation of motion is solved by a sum of two ex-
ponentials. This means essentially Ohmic damping.

(99)

often referred to as Drude damping. Using E2p) we then

find
A. Ohmic damping G(t)=ce M+ e Mt cge M, (99
For strictly Ohmic dampingy(z) =y and condition(51) h
holds exactly. We have where
G(t)zcle—)\lt+cze—)\2t' (92) )\1/2=aii n, )\3:5 (100)
are the solutions of
Where )\1/2: ’)//Zi | Vo~ ’)/2/4 and C1/2: + ()\1_}\2)_1.
Thus y,=y and yq= w5. We still have to examine whether 22— wpZ?+ (wi+ yop)Z— wiwp=0 (101
S(t) fulfills Eqg. (50). To this purpose it is useful to note that
Eq. (25) gives for the Fourier transforms and
~ ih W\ ~ B i a—intd
S(w)=mcotl'<7)6(w), (93 C1= ﬂa+i7]_5’
where i atintd

- - - CZ:Z a—in—25' (102
S(w)=—iw)+Niw),
~ - . (949 2

The latter relations follow from the fact th&(t) is symmet-  Thjs result holds also in the overdamped case whetee-
ric and G(t) antisymmetric. Of course, Eq93) is just the  comes imaginary. To calculat) we have to evaluate the
familiar fluctuation-dissipation theorem. Now, performing inverse Fourier transform of E¢93) by contour integration.

the inverse Fourier transform we fif] Using Eq.(99) one finds[26]

S(t)=d,e M'+dye ' -T'(1), (95) S(t)=d;e M'+dye Mi+dze M -T(t), (103
where where
h TN 1) f m\, .
d1j2=CuiayyCO4 — =1, di=cizcol — |, =123, (104)
(96) ,
2y« vpeXp(—vpt 2y < wiv e "t

= e r=oo3, o (109

MB &4 (w2t 27— 7202 MBS (N — v (Na— v (\5—1h)
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From these results we see tist) andG(t) are of the forms . iM 1 i
(50) and(51), respectively, if the exponentials expxst) and p(t)=— 7(a2+ 7)|q, Z1q,p(D)+ g<q2>[p-9(t)]}
exp(—v,t) decay much faster than expk;t). This is the
case for i 1 (-
— 74 4 51Pp(1;— 2 (PI)[a,p(1)]
Rd)\l), Rd)\z)« 5,1/. (106)
i 1 i
Using the Vieta relations - W[p’ Z1P.p(D}— g(P2>[q,P(t)]}, (119
2a+6=wp, first derived by Haake and Reibofd2].
s o 2 The equilibrium variances can be calculated analytically
a’+7°=wywp/ 6, (109 [6]. In the strictly Ohmic limitwp—, (g2 is a regular
expression butp?) diverges logarithmically. If we disregard
a?+ 7+ 2a8= 05+ yop, terms of the ordetvg/wp , Y/ wp, v/wp, the divergent part

of (p?) is given by
we find that Ref ;) < implies

M#iy [wp
a<s. (108 —In|—-
Further, the relation§107) yield Hence, for the classical limit it is not sufficient to have
v>w,, that is kgT>hw, rather we also need
y _al+(wg/d)? yIn(wp/v)<v. Thus the strictly Ohmic limitwp— can

) 25 1+2al8)?" (109 only be taken after the high temperature limit. With this se-
D ( )
quence of limits we obtain the classical coefficients

In view of Eq. (108 this gives[27]

.
_ 2 — — —
Yop=2al6-8(al 5)>+0((l8)?). (110 o=@ %=y De=0. Dp=rgm. (116

Hence, it is natural to use//wD as a small parameter to The associated Liouville operator is equivalent to the classi-
determine the roots of Eq101). Up to first order iny/w,  Cal Fokker-Planck operator of the Kramers equatiag].
one obtains from Eq<100) and (1021) We stress again that the results in this section remain valid

for strong damping provided E@l12) is satisfied.
2

w
a= %/ w%TDwg’ C. Weak damping with arbitrary frequency dependence
In this section we show thei(t) and G(t) always take
n=\wi+2awi wp—a?, (111  the forms of Eqs(50) and(51) in the limit of weak damping.
Let us assume that the damping kernét) has a high fre-
quency cutoffw, and that its Laplace transform is an ana-
Iytic function in the vicinity of—iwy. We introduce a typical
These relations are valid for arbitrary ratios gfand w,. ~ damping strength by
Also wp/wq is not necessarily large. As a consequence of "
this analysis we find that only under the conditions yczf dsy(s)coq ws). (117
0

S=wp—2a.

y<wp,v (112 . o |
Then the weak damping condition is

and Ye<wg,We, V. (118

-1 -1
>op™,v " (113 Apart from thisy(t) is not assumed to have additional prop-
) ) . erties.
(31(8)3) m:gngg ?gf;%)z‘:giaetr?t(ljy tl)grg;ZeDfrllrfgetv(\:/St()t?frZr?dIrs]quEfiq. _In the limit considered one can determine the poles of
ciently high temperature&gT> 7 vy, the oscillator dynamics Géli)sf;?g] Eq. (29 perturbatively. To first order iry; the
can be described by an approximate Liouville operator withp

the coefficients Ye Vs
)\1/2:? *i w0+ ? y (119)
Yo=a’+ 7’
where
Yp=2a. (114
Yetivs=y(—iwg). (120

This combines with Eq(90) to yield the approximate master
equation Performing the inverse Laplace transform of E2p) we find
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2

_ ! “Ngt_ a—Aot Y®@p
G(t) Zwo(e r—e '2) (127 yc—m,
YWo®Wp

with residues in zeroth order. I:Iigher—order corrections would VS:%T,US’
depend on the specific form gf(z) but need not be deter- (125
mined because the diffusion constaf@§) are independent YewoM woT
of the residues. Thus, in the weak damping~li|@'(tt) is of <=7 5 c *( ” )
the form of Eq.(51). From Eq.(93) we see tha§(w) has the
same poles a&(w) and, in addition, poles atv, (n inte- oM [ vy, LWy wp
gen. As shown above, we can disregard the terms coming S:T( 2w0+?’cR%'ﬁ 1+i 7) Y1 7) ]

from the poles atv, for times greater than the thermal re-
laxation timev 1. Thus, S(t) is effectively of the form of In the strictly Ohmic limitwp—% we havey.=y, ys=0
Eq. (50). Inserting\ 1, into Eq.(90), we find to leading order but
in the damping strength

M
K= — 120 |n<@) (126)
o 14
D _ 1 D 73“’0_'2””'7;('””') , is logarithmically divergent. The master equatid24) with
T MB e wot vy the coefficient§125 can be compared with the well-known
(1220  Agarwal equatiof13]
. 2 2 .
o 2 . i|p M wg I K
b 1 Ye®o _ ﬁwocot woT P(t)z—g[er 5 QZ,P(I)}—X[%{D,P(U}]
PTMB nZ wit v T°2M '
M wq W

—x——coth —=[q,[q,p(V)]], (127)

This result can be expressed in terms of the Laplace trans-
form (88) of the real part of the influence kernel which was derived with the help of projection operator tech-
niques from the same microscopic model using the Born
approximation in conjunction with a short-memory approxi-
. ho~ mation. As a main difference, we see that in Agarwal’s equa-
DptiwoDg=pzK'(—iwo). (123 tion theK, term is absent. This term is only negligible if

W< wp<Y (128

Thus,D, andD, are essentially given by the sine and cosineHence, the master equatiéh24) is a generalization of the
moments ofK’(t). With K.+iK,=K'(—iwy) the master Agarwal equation.
equation takes the form

D. Connection to Lindblad theory

The approximate time-independent Liouville operators
studied above describe the dynamics after the decay of fast
transients. Markovian Liouville operators such as these are
often discussed in the context of Lindblad the@2@]. This
theory establishes the most general form of generafoo$
dissipative quantum dynamigs(t)=Lp(t) preserving the

K positivity of density operators. The Lindblad master equation

Cc
-5 lafa.pM]]. (124  reads

2 2
i P? MRty
P(t)——g erfq (1)

e Ks

. i~ 1

p()== F[H.p(0]+ 22 [Lip(),L T +[Lip(OLT ],
This general weak coupling master equation is given in terms (129
of four dissipation coefficientsy, leads to a frequency shift _
and may be absorbed by renormalizing v, is the classical whereL, are arbitrary operators aridl is a Hermitian opera-
damping coefficient. The coefficienks, and K depend on  tor. Using results by Sandulescu and Scuf&qj it is easily
the temperature. Whil& . equalsM vy, /% times the average seen that all the above-derived time-independent Liouville
energy of a quantum oscillator of frequeney, K depends  operators are not of Lindblad form. This is not too astonish-
on the specific form ofy(z) and can be calculated analyti- ing since the master equations derived hold only for times
cally only in certain cases. One of these is the Drude modet>t, wheret, is larger than an inverse cutoff frequency and
Then the moments,,s andK . are readily evaluated to read »~1. The short time dynamics fdrst, reduces the density
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matrix to a subspace where the fast components have de-

163

t>w, . (139

cayed. The Markovian master equation holds within this sub-

space only, while Lindblad theory requires validity fany

Then, by performing the time integral, the off-diagonal terms

reduced density matrix. This is of course not necessary agh+#m) are seen to be smaller than the diagonal terms by a

has been emphasized again recefty31].

factor (wot) ! This means that in the time window

However, we will show that in the weak coupling limit w51<t< y 1
further coarse graining will result in a Lindblad operator. To

this aim we first write the weak-coupling master equation

(124) in the form

p(t)=Lp(t)=Lop(t)+ yL1p(L). (130

In terms of the usual creation and annihilation operators

a', a we have

Lo=—iwg[a’a,-]. (131
Using the operators
Pn=; |k)(k+n], (132

where|k) are the eigenstates afa, £, may be written as

Lo=2> iwgnP,. (133
n

Further

y=—ilala, 1+ “_T'ys[aw, - %'%[az,.]
+ YL([a' vaT]+[a1 'aT])+ ’)/T([aT' 1a]+[aTv : a])
Ke+

ik
m([aT' a'+[a',-a'])

Ke—iKs
2Mw0

([a-,a]+[a,-a]), (134

where we have introduced

K woT
c +£=E[cotl—(%)r1.

YT May 4 4 (139

The time evolution is formally given by

p(t)=ep(0).

Now we rewrite this by a well-known operator identity

(136)

p(t)=e“'p(0)+ vftdsec(’(“s)ﬁleﬁsp(o). (137
0

For weak damping and times<y ! the operatoe”s in the
integrand may be replaced t@f°°. Inserting then Eq(133)
into Eq. (137) we find

p(t)= e’

t .
1+ ynEr‘,n Odséwo(“’m)SPnllle p(0).
(139

Further coarse graining is achieved by demanding

p(t)=e [ 1+ ytL;]p(0),

where we have introduced tledfectivedissipative Liouville
operator

(140

L= PoLyPy. (141)
n

The density matrix140 coincides with the solution of the
master equation

p(t)=(Lo+ yLy)p(t) (142

for

t<y L. (143

Thus, within the time wiQdom51<t< v~ ! the two opera-
tors Lo+ yL, and Lo+ yL, give the same dynamics. The
operator£; may be evaluated further. It is seen that only
“non-rotating” terms containing equal numbers of creation
and annihilation operators survive the coarse graining in
time. The resulting master equation

p(0)= =i o+ | [a ap(®)]+7,([a" p(v)a]

+[a",p(t)al)+ vy ([ap(t),a ]+ [a,p(t)a’])
(144)

was first derived by Weidlich and Haak&4] from a micro-
scopic model for the damped motion of a single mode of the
electromagnetic field in a cavity. The generator defined by
this master equation is of Lindblad form. However, the re-
sulting mean value equations violate Ehrenfest’s theorem, in
particular

J
2 () # (p(t)/M. (145

This is due to the fact that on the coarse-grained time scale
At> wgl the variablep(t)/Mwy and q(t) exchange iden-
tity frequently and only a time-averaged version of the mean
value equations must be obeyed.

VI. CONCLUSIONS

Based on results of the path integral technique we have
examined quantum master equations for the damped har-
monic oscillator. An exact generalized master equation de-
scribing the relaxation of initial thermal conditions was de-
rived. This equation was shown to be a quantum mechanical
generalization of Adelman’s Fokker-Planck equation. We
also have given an exact Liouville operator describing the
time evolution of equilibrium correlation functions, which
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likewise reduces to the Adelman Fokker-Planck operator ircosine moments of the damping kernel exist. The new weak-
the classical limit. The fact that two different quantum gen-coupling master equation is more general than the well-
eralizations of the Adelman operator must be used for th&nown Agarwal equation. We have explained why the Liou-
relaxation of expectation values and the regression of flucyille operator is not of Lindblad form. However, time coarse
tuations is intimately connected with the failure of the On-graining leads to a generator of Lindblad form. The resulting
sager regression hypothesis in the quantum regime. Indeegparse grained master equation was found to be the
the two Liouville operator¢56) and(76) are only identical if  \weidlich-Haake equation also known as the quantum optical
S(t) is proportional toG(t). master equation. Due to the time coarse graining only a time-
Apart from these exact results we have studied in detaihyeraged version of the mean value equation is obeyed lead-
the range of parameters leading to quantum master equatiofify to an apparent contradiction with the Ehrenfest theorem.
with time-independent generator. In the case of strong damp- |n summary, we have derived several generalized master
ing a time-independent Liouville operator is obtained ap-equations for the damped quantum oscillator for various
proximately for essentially frequency-independent dampingeases of interest. In view of the results earlier findings were
However, strictly Ohmic damping is ill behaved in the quan-pyt in proper perspective.
tum case, and the appropriate generalization of the classical
Fokker-Planck process is given by a low frequency Ohmic
model with high frequency cutoff such as the Drude model.
This is not too amazing since already in the classical limit
the Adelman operator becomes time independent only for The authors would like to thank J. Ankerhold, J. Hainz
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